卷三十五 志第十一
曆五 大統推步,悉本授時,惟去消長而已。然通軌諸捷法,實為布算所須,其間次序,亦有與曆經微別者。如氣朔發斂,授時原分二章,今合為一。授時盈縮差在日躔,遲疾差在月離,定朔、經朔離為二處。今則經朔後,即求定朔,於用殊便。其目七:曰氣朔,曰日躔,曰月離,曰中星,曰交食,曰五星,曰四餘。 步氣朔[發斂附] 洪武十七年甲子歲為元。[上距至元辛巳一百○四算。] 歲周三百六十五萬二千四百二十五分,[實測無消長。]半之為歲周,四分之為氣象限,二十四分之為氣策。 日周一萬。[即一百刻,刻有百分,分有百秒,以下微纖,皆以百遞析。] 氣應五十五萬○三百七十五分。置距算一百○四,求得中積三億七千六百一十九萬九千七百七十五分,加辛巳氣應五十五萬○六百分,得通積三億七千六百七十五萬○三百七十五分,滿紀法六十去之,餘為大統氣應。 閏應一十八萬二千○百七十○分一十八秒。置中積,加辛巳閏應二十○萬二千○五十分,得閏積三億七千六百四十○萬一千八百二十五分,滿朔實去之,餘為大統閏應。 轉應二十○萬九千六百九十○分。置中積,加辛巳轉應一十三萬○二百○五分,共得三億七千六百三十二萬九千九百八十分,滿轉終去之,餘為大統轉應。 交應一十一萬五千一百○五分○八秒。置中積加辛巳交應二十六萬○三百八十八分,共得三億七千六百四十六萬○一百六十三分,滿交終去之,餘為大統交應。 按授時曆既成之後,閏轉交三應數,旋有改定,故元志、曆經閏應二十○萬一千八百五十分,而通軌載閏應二十○萬二千○五十分,實加二百分,是當時經朔改早二刻也。曆經轉應一十三萬一千九百○四分,通軌載轉應一十三萬○二百○五分,實減一千六百九十九分,是入轉改遲一十七刻弱也。曆經交應二十六萬○一百八十七分八十六秒,通軌交應二十六萬○三百八十八分,實加二百分一十四秒,是正交改早二刻強也。或以通軌辛巳三應,與元志互異,目為元統所定,非也。夫改憲必由測驗,即當具詳始末,何反追改授時曆,自沒其勤乎?是故通軌所述者,乃授時續定之數,而曆經所存,則其未定之初藁也。 通餘五萬二千四百二十五分。 推天正冬至 置距洪武甲子積年減一,以歲周乘之為中積,加氣應為通積,滿紀法去之,至不滿之數,為天正冬至。以萬為日,命甲子算外,為冬至日辰。 累加通餘,即得次年天正冬至。 推天正閏餘 置中積,加閏應,滿朔策去之,至不滿之數,為天正閏餘。 累加通閏,即得次年天正閏餘。 推天正經朔 置冬至,減閏餘,遇不及減,加紀法減之,為天正經朔。 無閏,加五十四萬三六七一一六。[十二朔策去紀法。]有閏,加二十三萬八九七七○九。[十三朔實去紀法。]滿紀法仍去之,即得次年天正經朔。 視天正閏餘在閏限已上,其年有閏月。 推天正盈縮 置半歲周,內減其年閏餘全分,餘為所求天正縮曆。 如逕求次年者,於天正縮曆內減通閏,即得。減後,視在一百五十三日○九已下者,復加朔實,為次年天正縮曆。 推天正遲疾 置中積,加轉應,減去其年閏餘全分,餘滿轉終去之,即天正入轉。視在轉中已下為疾曆,已上去之為遲曆。 如逕求次年者,加二十三萬七一一九一六,[十二轉差之積。]經閏再加轉差,皆滿轉終去之,遲疾各仍其舊。若滿轉中去之,為遲疾相代。 推天正入交 置中積,減閏餘,加交應,滿交終去之,即天正入交汎日。 如逕求次年者,加六千○八十二分○四秒,[十二交差內去交終。]經閏加二萬九千二百六十五分七十三秒,[十三交差內去交終。]皆滿交終仍去之,即得。 推各月經朔及弦望 置天正經朔,加二朔策,滿紀法去之,即得正月經朔。以弦策累加之,去紀法,即得弦望及次朔。 推各恒氣 置天正冬至,加三氣策,滿紀法去之,即得立春恒日。以氣策累加之,去紀法,即得二十四氣恒日。 推閏在何月 置朔策,以有閏之年閏餘減之,餘為實,以月閏為法而一,得數命起天正次月算外,即得所閏之月。閏有進退,仍以定朔無中氣為定。[如減餘不及月閏,或僅及一月閏者,為閏在年前。] 推各月盈縮曆 置天正縮曆,加二朔策,去半歲周,即得正月經朔下盈曆。累加弦策,各得弦望及次朔,如滿半歲周去之交縮,滿半歲周又去之即復交盈。 推初末限 視盈曆在盈初縮末限已下,縮曆在縮初盈末限已下,各為初。已上用減半歲周為末。 推盈縮差 置初末曆小餘,以立成內所有盈縮加分乘之為實,日周一萬為法除之,得數以加其下盈縮積,即盈縮差。 推各月遲疾曆 置天正經朔遲疾曆,加二轉差,得正月經朔下遲疾曆。累加弦策,得弦望及次朔,皆滿轉中去之,為遲疾相代。 推遲疾限 各置遲疾曆,以日轉限乘之,即得限數。 以弦轉限累加之,滿轉中限去之,即各弦望及次朔限。 如逕求次月,以朔轉限加之,亦滿轉中去之,即得。[又法:視立成中日率,有與遲疾曆較小而相近者以減之,餘在八百二十已下,即所用限。] 求遲疾差 置遲疾曆,以立成日率減之,[如不及減,則退一位。]餘以其下損益分乘之為實,八百二十分為法除之,得數以加其下遲疾積,即遲疾差。 推加減差 視經朔弦望下所得盈縮差、遲疾差,以盈遇遲、縮遇疾為同相併,盈遇疾、縮遇遲為異相較,各以八百二十分乘之為實,再以遲疾限行度內減去八百二十分,為定限度為法,法除實為加減差。 盈遲為加,縮疾為減,異名相較者,盈多於疾為加,疾多於盈為減,縮多於遲減,遲多於縮加。 推定朔弦望 各置經朔弦望,以加減差加減之,即為定日。視定朔干名,與後朔同者月大,不同者月小,內無中氣者為閏月。 其弦望在立成相同日日出分已下者,則退一日命之。 推各月入交 置天正經朔入交汎日加二交差,得正月經朔下入交汎日。累加交望,滿交終去之,即得各月下入交汎日。 逕求次月,加交差即得。 推土王用事 置穀雨、大暑、霜降、大寒恒氣日,減土王策,如不及減,加紀法減之,即各得土王用事日。 推發斂加時 各置所推定朔弦望及恒氣之小餘,以十二乘之,滿萬為時,命起子正。滿五千,又進一時,命起子初。算外得時不滿者,以一千二百除之為刻,命起初刻。初正時之刻,皆以初一二三四為序,於算外命之。[其第四刻為畸零,得刻法三之一,凡三時成一刻,以足十二時百刻之數。] 按古曆及授時,皆以發斂為一章。發斂云者,日道發南斂北之細數也,而加時附焉,則又所以紀發斂之辰刻,故曰發斂加時也。大統取其便算,故合發斂與氣朔共為一章,或以乘除疏發斂,非其質矣。 推盈日 視恒氣小餘,在沒限已上,為有盈之氣。 置策餘一萬○一四五六二五,[以十五日除氣策。]以有盈之氣小餘減之,餘以六十八分六六[以氣盈除十五日。]乘之,得數以加恒氣大餘,滿紀法去之,命甲子算外,得盈日。 求次盈。置盈日及分秒,以盈策加之,又去紀法,即得。 推虛日 視經朔小餘在朔虛已下,為有虛之朔。 置有虛之朔小餘,以六十三分九一[以朔虛除三十日。]乘之,得數以加經朔大餘,滿紀法去之,命甲子算外為虛日。 求次虛。置虛日及分秒,以虛策加之,又去紀法,即得。 推直宿 置通積,[以氣應加中積。]減閏應,以宿會二十八萬累去之,餘命起翼宿算外,得天正經朔直宿。置天正經宿直宿,加兩宿策,為正月經朔直宿。以宿策累加,得各月經朔直宿。再以各月朔下加減差加減之,為定朔直宿。 步日躔 周天三百六十五度二十五分七十五秒,半之為半周天,又半之為象限。 歲差一分五十秒。 周應三百一十五度一十分七十五秒。按此係至元辛巳之周應,乃自虛七度至箕十度之數也。洪武甲子相距一百四年,歲差已退天一度五十四分五十秒,而周應仍用舊數,殆傳習之誤耳。 推天正冬至日躔赤道宿次 置中積,加周應,[應減距曆元甲子以來歲差。]滿周天去之,不盡,起虛七度,依各宿次去之,即冬至加時赤道日度。如求次年,累減歲差,即得。 赤道度
推天正冬至日躔黃道宿次 置冬至加時赤道日度,以至後赤道積度減之,餘以黃道率乘之。如赤道率而一,得數以加黃道積度,即冬至加時黃道日度。[黃赤道積度及度率,俱見法原。 ] 黃道度
推定象限度 以冬至加時赤道日度,與冬至加時黃道日度相減,為黃赤道差。以本年黃赤道差,與次年黃赤道差相減,餘以四而一,加入氣象限內,為定象限度。 推四正定氣日 置所推冬至分,即為冬正定氣,加盈初縮末限,滿紀法去之,餘為春正定氣。加縮初盈末限,去紀法,餘為夏正定氣。加縮初盈末限,去紀法,餘為秋正定氣。加盈初縮末限,去紀法,餘為次年冬正定氣。 推四正相距日 以前正定氣大餘,減次正定氣大餘,加六十日,得相距日。如次正氣不及減者,加六十日減之,再加六十日,為相距日。 推四正加時黃道積度 置冬至加時黃道日度,累加定象限度,各得四正加時黃道積度。 推四正加時減分 置四正定氣小餘,以其初日行度乘之,如日周而一,為各正加時減分。 冬正行一度○五一○八五。 春正距夏正九十三日者,行○度九九九七○三,距九十四日者行一度。 夏正行○度九五一五一六。 秋正距冬正八十八日者,行一度○○○五 ○五,距八十九日者行一度。 推四正夜半積度 置四正加時黃道積度,減去其加時減分,即得。 推四正夜半黃道宿次 置四正夜半黃道積度,滿黃道宿度去之,即得。 推四正夜半相距度 置次正夜半黃道積度,以前正夜半黃道積度減之,餘為兩正相距度,遇不及減者,加周天減之。 推四正行度加減日差 以相距度與相距日下行積度相減,餘如相距日而一,為日差。從相距度內減去行積度者為加,從行積度內減去相距度者為減。 秋正距冬至,冬至距春正八十八日,行積度九十度四○○九,八十九日行積度九十一度四○一四。 春正距夏至,夏至距秋正九十三日,行積度九十度五九九○,九十四日行積度九十一度五九八七。 推每日夜半日度 置四正後每日行度,[在立成。]以日差加減之,為每日行定度。 置四正夜半日度,以行定度每日加之,滿黃道宿度去之,即每日夜半日度。 黃道十二次宿度 危十二度六四九一,入娵訾,辰在亥。 推日躔黃道入十二次時刻 置入次宿度,以入次日夜半日度減之,餘以日周乘之,[一分作百分。]為實。以入次日夜半日度,與明日夜半日度相減,餘為法。實如法而一,得數,以發斂加時求之,即入次時刻。 步月離 月平行度一十三度三十六分八十七秒半。 推朔後平交日 置交終分,[見氣朔曆。]減天正經朔交汎分,為朔後平交日。如推次月,累減交差二日三一八三六九,得次月朔後平交日。不及減交差者,加交終減之,其交又在本月,為重交月朔後平交日。[每歲必有重交之月。] 推平交入轉遲疾曆 置經朔遲疾曆,加入朔後平交日為平交入轉。在轉中已下,其遲疾與經朔同,已上減去轉中疾交遲,遲交疾。如推次月,累減交轉差三千四百二十三分七六,[交差內減轉差數。]即得。如不及減,加轉中減之,亦遲疾相代。 推平交入限遲疾差 置平交入轉遲疾曆,依步氣朔內,推遲疾限及遲疾差,即得。 推平交加減定差 置平交入限遲疾差,以日率八百二十分乘之,以所入遲疾限下行度而一,即得。在遲為加,在疾為減。 推經朔加時中積 置經朔盈縮曆,[見步氣朔內。]在盈曆即為加時中積,在縮曆加半歲周。如推次月,累加朔策,滿歲周去之,即各朔加時中積,命日為度。[若月內有二交,]後交即注前交經朔加時中積。 推正交距冬至加時黃道積度及宿次 置朔後平交日,以月平行乘之為距後度,以加經朔加時中積,為各月正交距冬至加時黃道積度。加冬至加時黃道日度,[見日躔。]以黃道積度鈐減之,至不滿宿次,即正交月離。如推次月,累減月平交朔差一度四六三一○二。[以交終度減天周,其數宜為一度四六四○八○。]遇重交月,同次朔。[後倣此。] 黃道積度鈐
推正交日辰時刻 置朔後症交日,加經朔,去紀法,以平交定差加減之,其日命甲子算外,小餘依發斂加時求之,即得正交日辰時刻。如推次月,累加交終,滿紀去之。如遇重交,再加交終。 推四正赤道宿次 置冬至赤道日度,以氣象限累加之,滿赤道積度去之,為四正加時赤道日度。 赤道積度鈐
推正交黃道在二至後初末限 置正交距冬至加時黃道積度,在半歲周已下為冬至後,已上減去半歲周,餘為夏至後。又視二至後度分,在氣象限已下為初限,已上用減半歲周,餘為末限。推次月者,若本月初限,則累減月平交朔差,餘為次月初限。不及減者,反減月平交朔差,餘為次月末限。若本月末限,則累加月平交朔差,為次月末限,至滿氣象限,以減半歲周,餘為次月初限。 推定差度 置初末限,以象極總差一分六○五五○八乘之,即為定差度。[象極總差,是以象限除極差,其數宜為一十六分○五四四二。]如推次月初限則累減,末限則累加,俱以極平差二十三分四九○二加減之。[極平差,是以月平交朔差,乘象極總差,其數宜為二十三分五○四九。] 推距差度 置極差十四度六六,減去定差度,即得。求次月,以極平差加減之。[初限加,末限減。] 推定限度 置定差度,以定極總差一分六三七一○七乘之,[定極總差,是以極差除二十四度,其數宜為一度六三七一○七。]所得視正交在冬至後為減,夏至後為加,皆置九十八度加減之,即得。 推月道與赤道正交宿度 正交在冬至後,置春正赤道積度,以距差度初限加末限減之。在夏至後,置秋正赤道積度,以距差初限減末限加之。得數,滿赤道積度鈐去之,即得。 推月道與赤道正交後積度幷入初末限 視月道與赤道正交所入某宿次,即置本宿赤道全度,減去月道與赤道正交宿度,餘為正交後積度。以赤道各宿全度累加之,滿氣象限去之,為半交後。又滿去之,為中交後。再滿去之,為半交後。視各交積度,在半象限以下為初限,以上覆減象限,餘為末限。 推定差 置每交定限度,與初末限相減相乘,得數,千約之為度,即得。[正交、中交後為加,半交後為減。] 推月道定積度及宿次 置月道與赤道各交後每宿積度,以定差加減之,為各交月道積度。加月道與赤道正交定宿度,共為正交後宿度。以前宿定積度減之,即得各交月道宿次。 活象限例 置正交後宿次,加前交後半交末宿定積度,為活象限。如正交後宿次度少,加前交不及數,卻置正交後宿次加氣象限即是。如遇換交之月,置正交後宿次,以前交前半交末宿定積度加之,為換交活象限。假如前交正交是軫,後交正交是角,其前交欠一軫。求活象限者,置正交後宿次,不從翼下取定積度加之,仍於軫下取定積度也。又如前交、正交是軫,後交、正交是翼,其前交多一翼。求活象限者,置正交後宿次,不從翼下取定積度加之,仍於張下取定積度也。 推相距日 置定上弦大餘,減去定朔大餘,即得。上弦至望,望至下弦,下弦至朔倣此。不及減者,加紀法減之。 推定朔弦望入盈縮曆及盈縮定差 置各月朔弦望入盈縮曆,以朔弦望加減差加減之, [並在步氣朔內。]為定盈縮曆。視盈曆在盈初限已下為盈初限,已上用減半歲周,餘為盈末限。縮曆在縮初限已下為縮初限,已上用減半歲周,餘為縮末限。依步氣朔內求盈縮差,為盈縮定差。 推定朔弦望加時中積 置定盈縮曆,如是盈曆在朔,便為加時中積,在上弦加氣象限,在望加半歲周,在下弦加三象限。如是縮曆在朔,加半歲周,在上弦加三象限,在望便為加時中積,在下弦加氣象限,加後滿周天去之。 推黃道加時定積度 置定朔弦望加時中積,以其下盈縮定差盈加縮減之,即得。 推赤道加時定積度及宿次 置黃道加時定積度,在周天象限已下為至後,已上去之為分後,滿兩象限去之為至後,滿三象限去之為分後。置分至後黃道積度,以立成內分至後積度減之,餘以其下赤道度率乘之,如黃道度率而一,得數加入分至後積度,次以所去象限合之,為赤道加時定積度。置赤道加時定積度,加入天正冬至加時赤道日度,滿赤道積度鈐去之,得定朔弦望赤道加時宿次。 推正半中交後積度 置定朔弦望加時赤道宿次,視朔弦望在何交後,[正半,中半。]即以交後積度,在朔望加時赤道宿前一宿者加之,即為正半中交後積度,滿氣象限去之,為正半中換交。 推初末限 視正半中交後積度,在半象限已下為初限,已上覆減氣象限,餘為末限。 推月道與赤道定差 置其交定限度,與初末限相減相乘,所得,千約之為度,即定差。在正交、中交為加,在半交為減。 推正半中交加時月道定積度 置正半中交後積度,以定差加減之,為朔弦望加時月道定積度。 推定朔弦望加時月道宿次 置定朔弦望加時月道定積度,取交後月道定積度,在所置宿前一宿者減之,即得。遇轉交則前積度多,所置積度少為不及減。從半轉正,加其交活象限減之。從正轉半,從半轉中,從中轉半,皆加氣象限減之。 推夜半入轉日 置經朔弦望遲疾曆,以定朔弦望加減差加減之。在疾曆,便為定朔弦望加時入轉日。在遲曆,用加轉中置定朔弦望加時入轉日,以定朔弦望小餘減之,為夜半入轉日。遇入轉日少不及減者,加轉終減之。 推加時入轉度 置定朔弦望小餘,去秒,取夜半入轉日下轉定度乘之,萬約之為分,即得。 遲疾轉定度鈐
推定朔弦望夜半入轉積度及宿次 置定朔弦望加時月道定積度,減去加時入轉度,為夜半積度。如朔弦望加時定積度初換交,則不及減,半正相接,用活象限,正半、中半相接,用氣象限加之,然後減加時入轉度,則正者為後半,後半為中,中為前半,前半為正。置朔弦望夜半月道定積度,依推定朔弦望加時月道宿次法減之,為夜半宿次。 推晨昏入轉日及轉度 置夜半入轉日,以定盈縮曆檢立成日下晨分加之,為晨入轉日。[滿轉終去之。]置其日晨分,取夜半入轉日下轉定度乘之,萬約為分,為晨轉度。如求昏轉日轉度,依法檢日下昏分,即得。 推晨昏轉積度及宿次 置朔弦望夜半月道定積度,加晨轉度,為晨轉積度。如求昏轉積度,則加昏轉度,滿氣象限去之,則換交。[若推夜半積度之時,因朔弦望加時定積不及減轉度,以半正相接,而加活象限減之者,今復換正交,則以活象限減之。]置晨轉積度,依前法減之,為晨分宿次,置昏轉積度,依法減之,為昏分宿次。 推相距度 朔與上弦相距,上弦與望相距,用昏轉積度。望與下弦相距,下弦與朔相距,用晨轉積度。置後段晨昏轉積度,視與前段同交者,竟以前段晨昏轉積度減之,餘為相 距度。若後段與前段接兩交者,從正入半,從半入中,從中入半,加氣象限。從半入正,加活象限。然後以前段晨昏轉積度減之。若後段與前段接三交者,其內無從半入正,則加二氣象限,其內有從半入正,則加一活象限,一氣象限,以前段晨昏轉積度減之。 推轉定積度 置晨昏入轉日,[朔至弦,弦至望,用昏。望至弦,弦至朔,用晨。]以前段減後段,不及減者,加二十八日減之,為晨昏相距日。從前段下,於鈐內驗晨昏相距日同者,取其轉定積度。若朔弦望相距日少晨昏相距日一日者,則於晨昏相距日同者,取其轉積度,減去轉定極差一十四度七一五四,餘為前段至後段轉定積度。 轉定積度鈐
推加減差 以相距度與轉定積度相減為實,以其朔弦望相距日為法除之,所得視相距度多為加差,少為減差。 推每日太陰行定度 置朔弦望晨昏入轉日,視遲疾轉定度鈐日下轉定度,累日以加減差加減之,至所距日而止,即得。 推每日月離晨昏宿次 置朔弦望晨昏宿次,以每日太陰行度加之,滿月道宿次減少,即得。 赤道十二宮界宿次
推月與赤道正交後宮界積度 視月道與赤道正交後,各宿積度宮界,某宿次在後,即以加之,便為某宮下正交後宮界積度。求次宮者,累加宮率三十度四三八一,滿氣象限去之,各得某宮下半交、中交後宮界積度。 推宮界定積度 視宮界積度在半象限已下為初限,已上覆減氣象限,餘為末限。 置其交定限度,與初末限相減、相乘,所得,千約之為度,在正交、中交為加差,在半交為減差。 置宮界正半中交後積度,以定差加減之,為宮界定積度。 推宮界宿次 置宮界定積度,於月道內取其在所置前一宿者減之,不及減者,加氣象限減之。 推每月每日下交宮時刻 置每月宮界宿次,減入交宮日下月離晨昏宿次。如不及減者,加宮界宿次前宿度減之,餘以日周乘之,以其日太陰行定度而一,得數,又視定盈縮曆取立成日下晨昏分加之。[晨加晨分,昏加昏分。]如滿日周交宮在次日,不滿在本日,依發斂推之,即交宮時刻。 步中星 推每日夜半赤道 置推到每日夜半黃道,[見日躔。]依法以黃道積度減之,餘如黃道率而一,以加赤道積度。又以天正冬至赤道加之,如在春正後,再加一象限,夏至後加半周天,秋正後加三象限,為每日夜半赤道積度。 推夜半赤道宿度 置夜半赤道積度,以赤道宿度挨次減之,為本日夜半赤道宿度。 推晨距度及更差度 置立成內每日晨分,以三百六十六度二十五分七十五秒乘之為實,如日周而一,為晨距度。倍晨距度,以五除之,為更差度。 推每日夜半中星 置推到每日夜半赤道宿度,加半周天,即夜半中星積度。以赤道宿度挨次減之,為夜半中星宿度。 推昏旦中星 置夜半中星積度,減晨距度,為昏中星積度。以更差度累加之,為逐更及旦中星積度。俱滿赤道宿度去之,即得。 以晨分五之一,加倍為更率。更率五而一為點率。凡昏分,即一更一點,累加更率為各更。凡交更即為一點,累加點率為各點。
|
|
Powered by www.guoxue123.com© Copyright 2006. All rights reserved